3.67 \(\int \frac {\cos ^3(c+d x) (A+B \cos (c+d x))}{(a+a \cos (c+d x))^4} \, dx\)

Optimal. Leaf size=154 \[ \frac {(12 A-215 B) \sin (c+d x)}{105 a^4 d (\cos (c+d x)+1)}-\frac {(6 A-55 B) \sin (c+d x)}{105 a^4 d (\cos (c+d x)+1)^2}+\frac {B x}{a^4}+\frac {(A-B) \sin (c+d x) \cos ^3(c+d x)}{7 d (a \cos (c+d x)+a)^4}+\frac {(3 A-10 B) \sin (c+d x) \cos ^2(c+d x)}{35 a d (a \cos (c+d x)+a)^3} \]

[Out]

B*x/a^4-1/105*(6*A-55*B)*sin(d*x+c)/a^4/d/(1+cos(d*x+c))^2+1/105*(12*A-215*B)*sin(d*x+c)/a^4/d/(1+cos(d*x+c))+
1/7*(A-B)*cos(d*x+c)^3*sin(d*x+c)/d/(a+a*cos(d*x+c))^4+1/35*(3*A-10*B)*cos(d*x+c)^2*sin(d*x+c)/a/d/(a+a*cos(d*
x+c))^3

________________________________________________________________________________________

Rubi [A]  time = 0.50, antiderivative size = 154, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.161, Rules used = {2977, 2968, 3019, 2735, 2648} \[ \frac {(12 A-215 B) \sin (c+d x)}{105 a^4 d (\cos (c+d x)+1)}-\frac {(6 A-55 B) \sin (c+d x)}{105 a^4 d (\cos (c+d x)+1)^2}+\frac {B x}{a^4}+\frac {(A-B) \sin (c+d x) \cos ^3(c+d x)}{7 d (a \cos (c+d x)+a)^4}+\frac {(3 A-10 B) \sin (c+d x) \cos ^2(c+d x)}{35 a d (a \cos (c+d x)+a)^3} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^3*(A + B*Cos[c + d*x]))/(a + a*Cos[c + d*x])^4,x]

[Out]

(B*x)/a^4 - ((6*A - 55*B)*Sin[c + d*x])/(105*a^4*d*(1 + Cos[c + d*x])^2) + ((12*A - 215*B)*Sin[c + d*x])/(105*
a^4*d*(1 + Cos[c + d*x])) + ((A - B)*Cos[c + d*x]^3*Sin[c + d*x])/(7*d*(a + a*Cos[c + d*x])^4) + ((3*A - 10*B)
*Cos[c + d*x]^2*Sin[c + d*x])/(35*a*d*(a + a*Cos[c + d*x])^3)

Rule 2648

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> -Simp[Cos[c + d*x]/(d*(b + a*Sin[c + d*x])), x]
/; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2735

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*x)/d
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 2968

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 2977

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x]
)^n)/(a*f*(2*m + 1)), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n -
1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x],
x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ
[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 3019

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_
.)*(x_)]^2), x_Symbol] :> Simp[((A*b - a*B + b*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m)/(a*f*(2*m + 1)), x] + D
ist[1/(a^2*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[a*A*(m + 1) + m*(b*B - a*C) + b*C*(2*m + 1)*Sin[e
 + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && LtQ[m, -1] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\cos ^3(c+d x) (A+B \cos (c+d x))}{(a+a \cos (c+d x))^4} \, dx &=\frac {(A-B) \cos ^3(c+d x) \sin (c+d x)}{7 d (a+a \cos (c+d x))^4}+\frac {\int \frac {\cos ^2(c+d x) (3 a (A-B)+7 a B \cos (c+d x))}{(a+a \cos (c+d x))^3} \, dx}{7 a^2}\\ &=\frac {(A-B) \cos ^3(c+d x) \sin (c+d x)}{7 d (a+a \cos (c+d x))^4}+\frac {(3 A-10 B) \cos ^2(c+d x) \sin (c+d x)}{35 a d (a+a \cos (c+d x))^3}+\frac {\int \frac {\cos (c+d x) \left (2 a^2 (3 A-10 B)+35 a^2 B \cos (c+d x)\right )}{(a+a \cos (c+d x))^2} \, dx}{35 a^4}\\ &=\frac {(A-B) \cos ^3(c+d x) \sin (c+d x)}{7 d (a+a \cos (c+d x))^4}+\frac {(3 A-10 B) \cos ^2(c+d x) \sin (c+d x)}{35 a d (a+a \cos (c+d x))^3}+\frac {\int \frac {2 a^2 (3 A-10 B) \cos (c+d x)+35 a^2 B \cos ^2(c+d x)}{(a+a \cos (c+d x))^2} \, dx}{35 a^4}\\ &=-\frac {(6 A-55 B) \sin (c+d x)}{105 a^4 d (1+\cos (c+d x))^2}+\frac {(A-B) \cos ^3(c+d x) \sin (c+d x)}{7 d (a+a \cos (c+d x))^4}+\frac {(3 A-10 B) \cos ^2(c+d x) \sin (c+d x)}{35 a d (a+a \cos (c+d x))^3}-\frac {\int \frac {-2 a^3 (6 A-55 B)-105 a^3 B \cos (c+d x)}{a+a \cos (c+d x)} \, dx}{105 a^6}\\ &=\frac {B x}{a^4}-\frac {(6 A-55 B) \sin (c+d x)}{105 a^4 d (1+\cos (c+d x))^2}+\frac {(A-B) \cos ^3(c+d x) \sin (c+d x)}{7 d (a+a \cos (c+d x))^4}+\frac {(3 A-10 B) \cos ^2(c+d x) \sin (c+d x)}{35 a d (a+a \cos (c+d x))^3}+\frac {(12 A-215 B) \int \frac {1}{a+a \cos (c+d x)} \, dx}{105 a^3}\\ &=\frac {B x}{a^4}-\frac {(6 A-55 B) \sin (c+d x)}{105 a^4 d (1+\cos (c+d x))^2}+\frac {(A-B) \cos ^3(c+d x) \sin (c+d x)}{7 d (a+a \cos (c+d x))^4}+\frac {(3 A-10 B) \cos ^2(c+d x) \sin (c+d x)}{35 a d (a+a \cos (c+d x))^3}+\frac {(12 A-215 B) \sin (c+d x)}{105 d \left (a^4+a^4 \cos (c+d x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 0.83, size = 329, normalized size = 2.14 \[ \frac {\sec \left (\frac {c}{2}\right ) \sec ^7\left (\frac {1}{2} (c+d x)\right ) \left (-1260 A \sin \left (c+\frac {d x}{2}\right )+882 A \sin \left (c+\frac {3 d x}{2}\right )-630 A \sin \left (2 c+\frac {3 d x}{2}\right )+294 A \sin \left (2 c+\frac {5 d x}{2}\right )-210 A \sin \left (3 c+\frac {5 d x}{2}\right )+72 A \sin \left (3 c+\frac {7 d x}{2}\right )+1260 A \sin \left (\frac {d x}{2}\right )+8260 B \sin \left (c+\frac {d x}{2}\right )-7140 B \sin \left (c+\frac {3 d x}{2}\right )+3780 B \sin \left (2 c+\frac {3 d x}{2}\right )-2800 B \sin \left (2 c+\frac {5 d x}{2}\right )+840 B \sin \left (3 c+\frac {5 d x}{2}\right )-520 B \sin \left (3 c+\frac {7 d x}{2}\right )+3675 B d x \cos \left (c+\frac {d x}{2}\right )+2205 B d x \cos \left (c+\frac {3 d x}{2}\right )+2205 B d x \cos \left (2 c+\frac {3 d x}{2}\right )+735 B d x \cos \left (2 c+\frac {5 d x}{2}\right )+735 B d x \cos \left (3 c+\frac {5 d x}{2}\right )+105 B d x \cos \left (3 c+\frac {7 d x}{2}\right )+105 B d x \cos \left (4 c+\frac {7 d x}{2}\right )-9940 B \sin \left (\frac {d x}{2}\right )+3675 B d x \cos \left (\frac {d x}{2}\right )\right )}{13440 a^4 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]^3*(A + B*Cos[c + d*x]))/(a + a*Cos[c + d*x])^4,x]

[Out]

(Sec[c/2]*Sec[(c + d*x)/2]^7*(3675*B*d*x*Cos[(d*x)/2] + 3675*B*d*x*Cos[c + (d*x)/2] + 2205*B*d*x*Cos[c + (3*d*
x)/2] + 2205*B*d*x*Cos[2*c + (3*d*x)/2] + 735*B*d*x*Cos[2*c + (5*d*x)/2] + 735*B*d*x*Cos[3*c + (5*d*x)/2] + 10
5*B*d*x*Cos[3*c + (7*d*x)/2] + 105*B*d*x*Cos[4*c + (7*d*x)/2] + 1260*A*Sin[(d*x)/2] - 9940*B*Sin[(d*x)/2] - 12
60*A*Sin[c + (d*x)/2] + 8260*B*Sin[c + (d*x)/2] + 882*A*Sin[c + (3*d*x)/2] - 7140*B*Sin[c + (3*d*x)/2] - 630*A
*Sin[2*c + (3*d*x)/2] + 3780*B*Sin[2*c + (3*d*x)/2] + 294*A*Sin[2*c + (5*d*x)/2] - 2800*B*Sin[2*c + (5*d*x)/2]
 - 210*A*Sin[3*c + (5*d*x)/2] + 840*B*Sin[3*c + (5*d*x)/2] + 72*A*Sin[3*c + (7*d*x)/2] - 520*B*Sin[3*c + (7*d*
x)/2]))/(13440*a^4*d)

________________________________________________________________________________________

fricas [A]  time = 0.91, size = 180, normalized size = 1.17 \[ \frac {105 \, B d x \cos \left (d x + c\right )^{4} + 420 \, B d x \cos \left (d x + c\right )^{3} + 630 \, B d x \cos \left (d x + c\right )^{2} + 420 \, B d x \cos \left (d x + c\right ) + 105 \, B d x + {\left (4 \, {\left (9 \, A - 65 \, B\right )} \cos \left (d x + c\right )^{3} + {\left (39 \, A - 620 \, B\right )} \cos \left (d x + c\right )^{2} + {\left (24 \, A - 535 \, B\right )} \cos \left (d x + c\right ) + 6 \, A - 160 \, B\right )} \sin \left (d x + c\right )}{105 \, {\left (a^{4} d \cos \left (d x + c\right )^{4} + 4 \, a^{4} d \cos \left (d x + c\right )^{3} + 6 \, a^{4} d \cos \left (d x + c\right )^{2} + 4 \, a^{4} d \cos \left (d x + c\right ) + a^{4} d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))^4,x, algorithm="fricas")

[Out]

1/105*(105*B*d*x*cos(d*x + c)^4 + 420*B*d*x*cos(d*x + c)^3 + 630*B*d*x*cos(d*x + c)^2 + 420*B*d*x*cos(d*x + c)
 + 105*B*d*x + (4*(9*A - 65*B)*cos(d*x + c)^3 + (39*A - 620*B)*cos(d*x + c)^2 + (24*A - 535*B)*cos(d*x + c) +
6*A - 160*B)*sin(d*x + c))/(a^4*d*cos(d*x + c)^4 + 4*a^4*d*cos(d*x + c)^3 + 6*a^4*d*cos(d*x + c)^2 + 4*a^4*d*c
os(d*x + c) + a^4*d)

________________________________________________________________________________________

giac [A]  time = 0.40, size = 155, normalized size = 1.01 \[ \frac {\frac {840 \, {\left (d x + c\right )} B}{a^{4}} - \frac {15 \, A a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 15 \, B a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 63 \, A a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 105 \, B a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 105 \, A a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 385 \, B a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 105 \, A a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1575 \, B a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{28}}}{840 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))^4,x, algorithm="giac")

[Out]

1/840*(840*(d*x + c)*B/a^4 - (15*A*a^24*tan(1/2*d*x + 1/2*c)^7 - 15*B*a^24*tan(1/2*d*x + 1/2*c)^7 - 63*A*a^24*
tan(1/2*d*x + 1/2*c)^5 + 105*B*a^24*tan(1/2*d*x + 1/2*c)^5 + 105*A*a^24*tan(1/2*d*x + 1/2*c)^3 - 385*B*a^24*ta
n(1/2*d*x + 1/2*c)^3 - 105*A*a^24*tan(1/2*d*x + 1/2*c) + 1575*B*a^24*tan(1/2*d*x + 1/2*c))/a^28)/d

________________________________________________________________________________________

maple [A]  time = 0.08, size = 177, normalized size = 1.15 \[ -\frac {\left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) A}{56 d \,a^{4}}+\frac {B \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{56 d \,a^{4}}+\frac {3 A \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{40 d \,a^{4}}-\frac {B \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d \,a^{4}}-\frac {\left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) A}{8 d \,a^{4}}+\frac {11 B \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{24 d \,a^{4}}+\frac {A \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 d \,a^{4}}-\frac {15 B \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 d \,a^{4}}+\frac {2 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) B}{d \,a^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^3*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))^4,x)

[Out]

-1/56/d/a^4*tan(1/2*d*x+1/2*c)^7*A+1/56/d/a^4*B*tan(1/2*d*x+1/2*c)^7+3/40/d/a^4*A*tan(1/2*d*x+1/2*c)^5-1/8/d/a
^4*B*tan(1/2*d*x+1/2*c)^5-1/8/d/a^4*tan(1/2*d*x+1/2*c)^3*A+11/24/d/a^4*B*tan(1/2*d*x+1/2*c)^3+1/8/d/a^4*A*tan(
1/2*d*x+1/2*c)-15/8/d/a^4*B*tan(1/2*d*x+1/2*c)+2/d/a^4*arctan(tan(1/2*d*x+1/2*c))*B

________________________________________________________________________________________

maxima [A]  time = 0.76, size = 201, normalized size = 1.31 \[ -\frac {5 \, B {\left (\frac {\frac {315 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {77 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {21 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {3 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}}{a^{4}} - \frac {336 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{4}}\right )} - \frac {3 \, A {\left (\frac {35 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {35 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {21 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {5 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}\right )}}{a^{4}}}{840 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))^4,x, algorithm="maxima")

[Out]

-1/840*(5*B*((315*sin(d*x + c)/(cos(d*x + c) + 1) - 77*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 21*sin(d*x + c)^5
/(cos(d*x + c) + 1)^5 - 3*sin(d*x + c)^7/(cos(d*x + c) + 1)^7)/a^4 - 336*arctan(sin(d*x + c)/(cos(d*x + c) + 1
))/a^4) - 3*A*(35*sin(d*x + c)/(cos(d*x + c) + 1) - 35*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 21*sin(d*x + c)^5
/(cos(d*x + c) + 1)^5 - 5*sin(d*x + c)^7/(cos(d*x + c) + 1)^7)/a^4)/d

________________________________________________________________________________________

mupad [B]  time = 0.34, size = 162, normalized size = 1.05 \[ \frac {B\,x}{a^4}+\frac {\left (\frac {12\,A\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{35}-\frac {52\,B\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{21}\right )\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+\left (\frac {16\,B\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{21}-\frac {23\,A\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{70}\right )\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+\left (\frac {9\,A\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{70}-\frac {5\,B\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{28}\right )\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-\frac {A\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{56}+\frac {B\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{56}}{a^4\,d\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)^3*(A + B*cos(c + d*x)))/(a + a*cos(c + d*x))^4,x)

[Out]

(B*x)/a^4 + ((B*sin(c/2 + (d*x)/2))/56 - (A*sin(c/2 + (d*x)/2))/56 + cos(c/2 + (d*x)/2)^2*((9*A*sin(c/2 + (d*x
)/2))/70 - (5*B*sin(c/2 + (d*x)/2))/28) + cos(c/2 + (d*x)/2)^6*((12*A*sin(c/2 + (d*x)/2))/35 - (52*B*sin(c/2 +
 (d*x)/2))/21) - cos(c/2 + (d*x)/2)^4*((23*A*sin(c/2 + (d*x)/2))/70 - (16*B*sin(c/2 + (d*x)/2))/21))/(a^4*d*co
s(c/2 + (d*x)/2)^7)

________________________________________________________________________________________

sympy [A]  time = 13.27, size = 192, normalized size = 1.25 \[ \begin {cases} - \frac {A \tan ^{7}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{56 a^{4} d} + \frac {3 A \tan ^{5}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{40 a^{4} d} - \frac {A \tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{8 a^{4} d} + \frac {A \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )}}{8 a^{4} d} + \frac {B x}{a^{4}} + \frac {B \tan ^{7}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{56 a^{4} d} - \frac {B \tan ^{5}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{8 a^{4} d} + \frac {11 B \tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{24 a^{4} d} - \frac {15 B \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )}}{8 a^{4} d} & \text {for}\: d \neq 0 \\\frac {x \left (A + B \cos {\relax (c )}\right ) \cos ^{3}{\relax (c )}}{\left (a \cos {\relax (c )} + a\right )^{4}} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**3*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))**4,x)

[Out]

Piecewise((-A*tan(c/2 + d*x/2)**7/(56*a**4*d) + 3*A*tan(c/2 + d*x/2)**5/(40*a**4*d) - A*tan(c/2 + d*x/2)**3/(8
*a**4*d) + A*tan(c/2 + d*x/2)/(8*a**4*d) + B*x/a**4 + B*tan(c/2 + d*x/2)**7/(56*a**4*d) - B*tan(c/2 + d*x/2)**
5/(8*a**4*d) + 11*B*tan(c/2 + d*x/2)**3/(24*a**4*d) - 15*B*tan(c/2 + d*x/2)/(8*a**4*d), Ne(d, 0)), (x*(A + B*c
os(c))*cos(c)**3/(a*cos(c) + a)**4, True))

________________________________________________________________________________________